
DOE P3HPC FORUM 2020

PREPARING
PERFORMANCE
PORTABLE QMCPACK
FOR EXASCALE

erhtjhtyhy

YE LUO
Computational Science Division
& Leadership computing facility
Argonne National Laboratory

PETER DOAK
Oak Ridge National Laboratory

PAUL KENT
Oak Ridge National Laboratory

Sep 1st 2020. Virtual

ACKNOWLEDGEMENTS

§ Thanks to
– QMCPACK developer

team
– Johannes Doerfert (ANL)
– Shilei Tian (Stony Brook

University)
– Oscar Hernandez (ORNL)

2

Supported by:
This research was supported by the Exascale Computing Project
(17-SC-20-SC), a joint project of the U.S. Department of Energy’s
Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including
software, applications, and hardware technology, to support the
nation’s exascale computing imperative.

Computational resource:
We gratefully acknowledge the computing resources provided and
operated by the Joint Laboratory for System Evaluation (JLSE) at
Argonne National Laboratory.

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

PERFORMANCE PORTABLE DESIGN

QMCPACK

§ QMCPACK, is a modern high-performance open-source Quantum Monte Carlo
(QMC) simulation code for electronic structure calculations of molecular, quasi-
2D and solid-state systems.

§ The code is C/C++ and adopts MPI+X(OpenMP/CUDA)
§ Monte Carlo: massive Markov chains (walkers) evolving in parallel. 1st level

concurrency.
§ Quantum: The computation in each walker can be heavy when solving many

body systems (electrons). 2nd level concurrency.

In a nutshell

4

MAPPING CONCURRENCY TO PARALLELISM

§ Walkers Nw are not data parallel but task parallel
– Workload per electron move depends on accept/reject. GPU
– Workload per step moving all the electrons is roughly equal. CPU

§ Electrons are data parallel
– Kernels are O(Ne2-3) per sample. Large Ne CPU. Small Ne GPU.
– Naturally, Ne vector computation utilizing SIMD and SIMT. CPU/GPU

§ Simulations need Ne from 10 to 10000 depending on the scientific
questions
– Use Nw and Ne to balance compute node efficiency and time-to-

solution.
– Need a tailored approach for performance portability beyond

programming models.

Monte Carlo can be a challenge for parallelism

5

Friendly
Unfriendly

MAPPING CONCURRENCY TO PARALLELISM

§ Our CPU/GPU portability experience
since 2010
– Walker batching saves GPU kernel

overhead in small problems.
– Lock-step algorithm has performance

penalty with large problem sizes.
– Incompatible internal APIs and diverged

code paths without fallback for missing
features.
• CPU QMC drivers have no walker

batching
• Legacy CUDA QMC drivers are very

bad with large problem sizes

Need a flexible scheme at high level for all sizes of Nw and Ne

6

§ Requirement for performance
portable code
– Feature complete
– Computationally intensive pieces

accelerated and selected at run
time

– Single source is desired but
architectural specialization is
possible and only allowed at the
bottom level.

– Not restricted to a particular
programming model at high
abstraction level

MAPPING CONCURRENCY TO PARALLELISM

§ The walker population with a node is subdivided
into crowds.
– Legacy CPU drivers have crowd size 1.
– Legacy CUDA drivers have 1 crowd.

§ Walkers within a crowd evolve in lock step at
every single electron move. Data parallelism.

§ Walkers between crowds are not synchronized
until all the single electron moves are
completed within a step. Task parallelism.

§ Lower levels have both batched and non-
batched APIs. Fallback is by default and can be
specialized.

Design unified QMC driver design for flexible dispatching

7

Time evolution

Crowd 0

Crowd 1

Unified batched QMC driver design

PERFORMANCE PORTABLE IMPLEMENTATION

MAPPING CONCURRENCY TO PARALLELISM

§ Crowds are mapped to CPU threads.
– No idle. Nested threads are optional.

§ Crowds leverage GPU streams/queues
explicitly or implicitly.

§ Desynchronized crowds keep the computing
device busy.

Threads and streams

9

Time evolution

Crowd 0

Crowd 1

Unified batched QMC driver
execution on an accelerator

MiniQMC concurrent crowds
IBM XL OpenMP runtime

IMPLEMENTATION STRATEGY

§ Spline single particle orbital evaluations are
implemented using OpenMP target offload

§ Slater determinant updates are implemented
using cuBLAS/cuSolver.

§ Both batched and non-batched code path are
specialized for maximal performance.

§ Non-local pseudopotential evaluation supports
additional batching for quadrature points
evaluation.

§ Jastrow factors and distance tables remains
on the CPU for the moment.

The current status

10

Majority cost

Complicated algorithm but
heavy cost.

Complicated algorithm but
light cost.

PERFORMANCE PORTABILITY WITH OPENMP

§ 2019 PPP meeting, IBM XL C/C++ compiler is the only working compiler for QMCPACK
§ 2019 Dec 2nd. https://github.com/QMCPACK/miniqmc/wiki/OpenMP-offload

A touch journey in 2019

11

Compiler Clang 9 AOMP 0.7-4 XL 16.1.1-3 Cray 9.0 GCC 9.2

device NV AMD NV NV NV

math header conflict F P P P P

math linker error P P P P P

declare target static data P P P P F

static linking F P P P F

check_spo FR FW P P FL

check_spo_batched FR P P P FL

miniqmc_sync_move FR P P P FL

Cray 9.1 inherits Clang 9 math function issues.

PERFORMANCE PORTABILITY WITH OPENMP

§ 2020 Aug 30th. https://github.com/QMCPACK/miniqmc/wiki/OpenMP-offload

A lot of exciting improvements in 2020

12

Compiler Clang 11 AOMP 11.8-
0 XL 16.1.1-5 OneAPI

beta08 Cray 9.0 GCC 10.2

device NVIDIA AMD NVIDIA Intel NVIDIA NVIDIA

math header conflict Pass Pass Pass Pass Pass Pass

complex arithmetic Pass Pass Pass Pass Fail -

declare target static data Pass Pass Pass - Pass Fail

static linking Fail Pass Pass Pass Pass -

multiple stream Pass Pass Pass Functioning Functioning -

check_spo Pass Pass Pass Pass Pass -

check_spo_batched Pass Pass Pass Pass Pass -

miniqmc_sync_move Pass Pass Pass Pass Pass -

Workaround in cmake

INTERACT WITH COMPILER DEVELOPERS

§ LLVM and SOLLVE fixed 17/20 bug reports. 4 requested optimization added.
§ AOMP fixed 9/14.
§ Contribute tests to vendor compiler team via early hardware access program.
§ Having our own testing. https://cdash.qmcpack.org

QMCPACK OpenMP offload works cross platforms

13

https://cdash.qmcpack.org/

PERFORMANCE ON SUMMIT
NiO benchmark at various sizes

14

§ Clang becomes better than XL in
overall performance.

§ Clang has a more efficient
runtime but slower kernels.

§ At 512 atom size. New GPU code
is way more efficient.

§ With optimized code paths, the
new GPU implementation
reaches at least 50%
performance of legacy CUDA
code which offloads more to GPU
and use async computation.

IMPROVEMENTS NEEDED IN QMCPACK

§ QMCPACK developers put a large effort on refactoring the existing code and
adding a better design. The progress is not easily visible to the outside but
fundamentally important to make all things happen. Will keep doing this non-
stop.

§ Need to further reduce data movement and synchronization. This requires
making more computation go asynchronously.

§ Use algorithmic innovation to fundamentally solve problems.

Keep effort in making the code better

15

IMPROVEMENTS NEEDED OUTSIDE QMCPACK

§ In OpenMP, we need
– target nowait async support with task dependency.
– More GPU related 5.0 features implemented.
– Interoperability with vendor programming models.
– Vendor compilers more reliable and capable.

§ Libraries
– Need batched BLAS1/2, see online manual and cublas_missing_functions

§ Tools
– OpenMP friendly debugger and profiler.

Software stack missing pieces

16

